Problem Statement | |||||||||||||
You have beads of several different colors that are to be placed on a string, with the requirement that for any group of three adjacent beads, all three must have different colors. You are given a int[] beads indicating how many of each color bead you have. The i-th element of beads is the number of beads of color i, where each i represents a distinct color. You are to return a long representing the number of ways they can be placed on the string, meeting the given requirement. | |||||||||||||
Definition | |||||||||||||
| |||||||||||||
Notes | |||||||||||||
- | The resulting arrangement of beads is linear, not circular. (Thus, the first bead on the string, and the last, are not adjacent.) | ||||||||||||
Constraints | |||||||||||||
- | beads will contain between 3 and 5 elements, inclusive. | ||||||||||||
- | Each element of beads will be between 1 and 10, inclusive. | ||||||||||||
- | The total number of beads will not exceed 35. | ||||||||||||
Examples | |||||||||||||
0) | |||||||||||||
| |||||||||||||
1) | |||||||||||||
| |||||||||||||
2) | |||||||||||||
| |||||||||||||
3) | |||||||||||||
| |||||||||||||
4) | |||||||||||||
|