Problem Statement | |||||||||||||
You will be given B0, the first element of our sequence. The following equation must hold for all n > 0: 0 = B0 + n+1C1B1 + n+1C2B2 + ... + n+1CnBnHere aCb is the standard binomial coefficient (see the notes). Return the value Bpos in the form "p/q" (quotes for clarity) where p and q are integers with no extra leading zeros and no common factors (other than 1). The denominator q must always be positive. If the returned value is 0 then return "0/1". | |||||||||||||
Definition | |||||||||||||
| |||||||||||||
Notes | |||||||||||||
- | aCb has value a!/(b!(a-b)!) where a! = a*(a-1)*...*2*1. | ||||||||||||
Constraints | |||||||||||||
- | B0 will be between -100 and 100, inclusive. | ||||||||||||
- | pos will be between 0 and 15, inclusive. | ||||||||||||
Examples | |||||||||||||
0) | |||||||||||||
| |||||||||||||
1) | |||||||||||||
| |||||||||||||
2) | |||||||||||||
| |||||||||||||
3) | |||||||||||||
|