Problem Statement | |||||||||||||
A line of symmetry is a line through the cartesian plane such that if you reflect everything from one side of the line to the other, you still have the same image. For example, if the x-axis is a line of symmetry, it means that for every point (x,y) there is also a point (x,-y). Your task is, given a list of points, determine how many such lines exist. | |||||||||||||
Definition | |||||||||||||
| |||||||||||||
Constraints | |||||||||||||
| - | Each element of points will be formatted as a list of x,y pairs "<x1> <y1> <x2> <y2> <x3> <y3> ...", where there is exactly one space between every two terms, and both <xi> and <yi> are integers. | ||||||||||||
| - | <xi> and <yi> will both be between -10,000 and 10,000, inclusive. | ||||||||||||
| - | Each point will be unique. | ||||||||||||
| - | There will be between 2 and 200 points, inclusive. | ||||||||||||
Examples | |||||||||||||
| 0) | |||||||||||||
| |||||||||||||
| 1) | |||||||||||||
| |||||||||||||
| 2) | |||||||||||||
| |||||||||||||
| 3) | |||||||||||||
| |||||||||||||