Problem Statement | |||||||||||||
Consider a hexagonal grid with 6 sides, with the side lengths given by the int[] s (in the clockwise order), as shown in the following picture:
Count the number of ways to color each cell with one of two colors, black or white, such that every non-border black cell has exactly a black neighbors, and every non-border white cell has exactly b white neighbors (a cell is called non-border if and only if it has exactly 6 neighbors in the grid). | |||||||||||||
Definition | |||||||||||||
| |||||||||||||
Constraints | |||||||||||||
| - | s will contain exactly 6 elements. | ||||||||||||
| - | Each element of s will be between 2 and 6, inclusive. | ||||||||||||
| - | a and b will each be between 0 and 6, inclusive. | ||||||||||||
| - | s will define a valid hexagonal grid. | ||||||||||||
| - | The answer will always fit into an int. | ||||||||||||
Examples | |||||||||||||
| 0) | |||||||||||||
| |||||||||||||
| 1) | |||||||||||||
| |||||||||||||
| 2) | |||||||||||||
| |||||||||||||
| 3) | |||||||||||||
| |||||||||||||