Problem Statement | |||||||||||||
|
You are given four longs K, N, A and B. Generate an integer list X of length B-A+1 using the following recursive definition:
X[0]=(K*A) MOD N
(note that K*A may overflow a 64-bit integer variable)
X[i]=(X[i-1]+K) MOD N
Given another two longs lower and upper, return the number of elements in the list which are between lower and upper, inclusive. | |||||||||||||
Definition | |||||||||||||
| |||||||||||||
Constraints | |||||||||||||
| - | K will be between 0 and 10,000,000,000, inclusive. | ||||||||||||
| - | N will be between 1 and 10,000,000,000, inclusive. | ||||||||||||
| - | A will be between 0 and 10,000,000,000, inclusive. | ||||||||||||
| - | B will be between A and 10,000,000,000, inclusive. | ||||||||||||
| - | lower will be between 0 and N-1, inclusive. | ||||||||||||
| - | upper will be between lower and N-1, inclusive. | ||||||||||||
Examples | |||||||||||||
| 0) | |||||||||||||
| |||||||||||||
| 1) | |||||||||||||
| |||||||||||||
| 2) | |||||||||||||
| |||||||||||||
| 3) | |||||||||||||
| |||||||||||||
| 4) | |||||||||||||
| |||||||||||||