Problem Statement | |||||||||||||
A Ferrers diagram of the partition of positive number n = a1 + a2 + ... + ak, for a list a1, a2, ..., ak of k positive integers with a1 ≥ a2 ≥ ... ≥ ak is an arrangement of n boxes in k rows, such that the boxes are left-justified, the first row is of length a1, the second row is of length a2, and so on, with the kth row of length ak. Let's call a FIELD diagram of order fieldOrder a Ferrers diagram with a1 ≤ fieldOrder, a2 ≤ fieldOrder - 1, ..., ak ≤ fieldOrder - k + 1, so a FIELD diagram can have a number of rows which is less than or equal to fieldOrder. Your method will be given fieldOrder, it should return the total number of FIELD diagrams of order fieldOrder. | |||||||||||||
Definition | |||||||||||||
| |||||||||||||
Constraints | |||||||||||||
- | fieldOrder will be between 1 and 30, inclusive | ||||||||||||
Examples | |||||||||||||
0) | |||||||||||||
| |||||||||||||
1) | |||||||||||||
| |||||||||||||
2) | |||||||||||||
|