### Problem Statement

An odd-digitable number is a positive integer which consists of only odd digits. For example, 1, 7, 15, 91 and 73353 are odd-digitable numbers, but 2, 70, 94 and 72653 are not odd-digitable.

You will be given integers N and M. Your method should return the smallest odd-digitable number that equals M modulo N. Your method should return "-1"(quotes for clarity only) if there are no such odd-digitable numbers.

### Definition

 Class: OddDigitable Method: findMultiple Parameters: int, int Returns: String Method signature: String findMultiple(int N, int M) (be sure your method is public)

### Constraints

-N will be between 2 and 100000, inclusive.
-M will be between 0 and N-1, inclusive.

### Examples

0)

 `10` `7`
`Returns: "7"`
1)

 `22` `12`
`Returns: "-1"`
2)

 `29` `0`
`Returns: "319"`
3)

 `5934` `2735`
`Returns: "791957"`

#### Problem url:

http://www.topcoder.com/stat?c=problem_statement&pm=4527

#### Problem stats url:

http://www.topcoder.com/tc?module=ProblemDetail&rd=7228&pm=4527

Andrew_Lazarev

#### Testers:

PabloGilberto , lbackstrom , brett1479

#### Problem categories:

Graph Theory, Math