Problem Statement | |||||||||||||
Let the function F(N) be a number of ones in the binary representation of the number N. For example F(279)=5 because 279 = (100010111)2. The sequence X is constructed using the following rules. The initial element X0 is 0, and each successive elements Xi is A * F(Xi-1) + B. You will be given integers A, B and K. Your method should return the XK element. See examples for further explanation. | |||||||||||||
Definition | |||||||||||||
| |||||||||||||
Constraints | |||||||||||||
- | A will be between 0 and 1000000, inclusive. | ||||||||||||
- | B will be between 0 and 1000000, inclusive. | ||||||||||||
- | K will be between 1 and 1000000000, inclusive. | ||||||||||||
Examples | |||||||||||||
0) | |||||||||||||
| |||||||||||||
1) | |||||||||||||
| |||||||||||||
2) | |||||||||||||
| |||||||||||||
3) | |||||||||||||
| |||||||||||||
4) | |||||||||||||
|